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LEITER TO THE EDITOR 

Dualisation of Voronoi domains and Klotz construction: 
a general method for the generation of proper space fillings 

P Kramer and M Schlottmann 
lnstitut fur Theoretische Physik, Universitat Tubingen, Auf der Morgenstelle 14, D-7400 
Tubingen, Federal Republic of Germany 

Received 12 September 1989 

Abstract. We present a general method for the generation of proper space fillings of 
Euclidean spaces with convex polytopes by projection from higher-dimensional spaces. 
As a special case, quasiperiodic tilings are obtained by the projection of periodic structures. 
The concept is general enough for the treatment of defects in quasiperiodic tilings by 
placing defects in high-dimensional translation lattices. 

Quasiperiodic geometric structures have attracted a lot of interest since the discovery 
of quasicrystals in Nature [I]. The simplest examples are quasiperiodic point sets in 
3-space which may serve as positions of atoms in order to model quasicrystals theoreti- 
cally. Structures of this kind are usually generated by so-called cut-and-project methods 
projecting points of a high-dimensional point lattice into a subspace which has irrational 
slopes with respect to the lattice. However, these schemes suffer from a certain degree 
of arbitrariness. For example, the selection of the lattice points which are projected 
(‘cut window’) is not determined without additional assumptions. Furthermore, one 
may ask whether it is possible to take over more geometric information from the 
high-dimensional lattice to the quasilattice. Therefore, it is necessary to analyse the 
geometric structures in more detail. 

The basic concept in the description of periodic structures is the unit cell. The 
extension of this concept to quasiperiodic structures leads to the idea of quasiperiodic 
tilings. Many schemes have been proposed for obtaining such tilings from a point 
lattice in higher dimensions. Among these are the grid and dualisation methods. But 
up to now, there are two disadvantages in these constructions. First of all, they 
essentially deal only with hypercubic lattices. Secondly, they tend to break down if 
one places defects into the high-dimensional lattice. 

Since there is no justification for a limitation to hypercubic lattices and, on the 
other hand, a theory of defects in quasicrystals would be more satisfactory in the same 
framework as the construction of the ideal quasicrystal, one would like to have a 
construction method which is as general as possible. 

The aim of this letter is the introduction of a scheme for generating proper space 
fillings which does not suffer from the disadvantages mentioned. We limit ourselves 
here to the presentation of the results, leaving detailed proofs to a forthcoming 
publication. 

We first set up some basic notation and definitions which will be used throughout. 
The whole construction takes place in a vector space of finite dimension n, denoted 

by V, which is provided with a positive definite scalar product - together with the 
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induced norm /I and topology. For S , ,  S2 E V, we write S ,  I Sz if x,, y,  E S, ( i  = 1,2) 
implies (x, - y l )  * (x2 - y2) = 0. 

If S is a subset of V, the convex hull of S,  conv(S), is the smallest convex subset 
of V which contains S. 

We assume that it is at least intuitively known what convex polytopes exist in V 
and what their bounding polytopes are. It is immediately obvious that for every finite 
subset M # 0 of V the set conv( M )  is a convex polytope in V (in fact, one may define 
convex polytopes this way). 

For brevity, we call a bounding polytope of a (convex) polytope P a boundary of 
P, or more precisely, m-boundary of P if it is of dimension m. (Note that we use 
‘boundary’ not in the usual point-set topological sense.) We include P in the set of 
its boundaries. 

A set 9 of m-dimensional polytopes in an m-dimensional Euclidean vector space 
V’ is called a proper spacejlling of V ’ ,  if the following two conditions hold. 

Condition F1: V’ = u9. 
Condition F2: Different elements of 9 do not intersect at interior points. 

If the elements of 9 can be generated as images of finitely many polytopes from 9 
under convenient translations, 9 is called a tiling of V’. 

Of special importance is the concept of Voronoi domains. If r is an arbitrary point 
set in V and q E r, the Voronoi domain of q with respect to r is the set 

v , - ( q ) : = { x E  v/q’~r=+--p I l x -q l l ) .  (1) 

It is clear from the definition that V I . ( q )  is a closed convex subset of V. In the following, 
we assume that r fulfils the following two conditions. 

Condition A I :  r has no points of accumulation in V. 

Condition A2: conv(r) = V .  

Then, it is easy to show that all V,- (q)  are convex polytopes in V of dimension n. 
We will use the notation 

VI.:= { P E VI P is a boundary of some V , - ( q ) ,  q E r} 
VF:={PE ?‘“,-(dim P = m }  O s m s n .  

( 2 )  

For example, Vg is the set of all Voronoi domains V, . (q )  (q  E r), while Yq. is the set 
of all sets of the form {x}, x being a vertex of some VI . (q )  ( q  E r). 

The set VI. is a proper space filling of V and has properties very similar to those 
of the well known simplicial complexes used in algebraic topology [page 7 of 21, as 
set out below. 

Property CI :  P,  E V,- Pz boundary of P,  =$ P2 E VI. 

Property C2: P I ,  P2€ V,- 
In other words, all boundaries of an element of Vr are contained in V,. and the 
polytopes of Vr are in ‘face-to-face’ relation. For that reason we call V;. the Voronoi 
complex associated with r. 

Let T r  V fulfil conditions A1 and A2. For P E  ‘VI., the set 

PI n P2 Z 0* P, n P2 boundary of both P, , P2. 

M w ) : = { q E r I P r  v,-(q)} (3) 
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is finite. We define the dual P* of P to be the convex polytope 
P* := conv( M*(  P ) ) .  (4) 

It turns out that dim P* = n -dim P and P* I P. Furthermore, if Q is a boundary of 
P* ( P E  VI-), then there exists a P'E VI- such that Q = (P')*.  We denote 

( 5 )  V::={P*lPE Vr} V:"' := { P* E Vy \dim P* = m } .  

One can show that properties C1 and C2 hold for V,*, so we call V,* the dual complex 
associated with r. 

The duality relation P -  P* induces a one-to-one correspondence between the two 
complexes Vr and Vy which respects the bounding property as follows: 

P' E P*@P:: 2 PT PI 9 pz E VI- ( 6 )  

i.e., if PI is a boundary of P2,  then PT is a boundary of P?,  and vice versa. 
Let r fulfil conditions A1 and A2. We fix a linear subspace VI, (the 'physical' 

space) of V, m := dim VI,. There is a unique decomposition V = VI,@ V,, VI, I V, . 
Furthermore, VI, determines the orthogonal projections 

TI/:  v-, VI, 

K ( P ) : =  v i ' ( q ( P ) ) n  r ; ' ( r , ( P * ) )  = q(P)+ .rr,(P*). 

?7,: v +  v,. 
For P E 7'; , the Klotz K ( P )  is defined by 

(7)  
K ( P )  is a convex polytope in V. We call K (  P) non-degenerate, if d im(K(P))  = n. 
This is the case if and only if d im(q(P) )  = m or, equivalently, dim(r,(P*)) = n - m. 

Let X ( T ,  VI,) be the set of all non-degenerate K ( P ) ,  P E  V p .  We refer to X ( r ,  Vll) 
as the Klotz construction for r adapted to VI,. It is obvious that X ( T ,  VI,) is dependent 
on the scalar product in V, so one can generate several Koltz constructions from one 
point set r in V by choosing different scalar products. This possibility can be advan- 
tageous, e.g., if one studies inflation rules for quasiperiodic patterns obtained by a 
Klotz construction. 

Our main result is that X ( r ,  VI,) is always a proper space filling of V if r fulfils the 
weak conditions A1 and A2. 

This yields the possibility of constructing proper space fillings in VI, and V, by 
some projection images .srll( P ) ,  T,( P * ) ,  respectively (P E VF). To this end, choose 
c ,  E V, but not contained in the projection image of an 1 boundary ( I  < n - m )  of a 
P* E V:"-" in V, (this holds for every c ,  E V, except for a set of measure zero with 
respect to some Lebesgue measure in V,). Then the affine space c,+ VI, is properly 
filled by its cuts through the elements of X ( T ,  VI[). Shifting this into V,, yields the 
desired space filling of V,,. As a consequence of the construction, all the polytopes 
that constitute this space filling are of the form q( P ) ,  P E  V?. The space filling of 
VI, obtained in this way is, written explicitly, 

(8) w, v,,, c , ) = { ~ , , ( P ) I P E  T , K ( P ) E ~ ,  V , , ) , ~ , E  T , ( ~ * ) ~ .  

9 * ( ~  v,,, C ,~ )={T , (P*) IPE  v;, K ( P ) E x ( ~ ,  vIl), CIIe T l l ( ~ ) } .  

In an analogous fashion, for CII E VI, (with a similar restriction as for c , )  one obtains 
a proper space filling of V, by projection images T,( P*) ,  P E V; : 

(9) 
Let us consider the special case that r is a point lattice in V (i.e. the orbit of a 

fixed point under the translations by elements of a discrete additive subgroup 9 of V 
which spans V over 02). Obviously, r fulfils conditions A1 and A2, so Klotz construc- 
tions are possible. 
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In this case, as follows immediately from the very construction, every Klotz 
construction for r is invariant under translations by elements of 9, i.e. it is periodic. 
Therefore, one can always find finitely many P,, . . . , PL E Vy such that 

x(r, v , , ) = { t + K ( ~ ) I t E ~ , j = i  ,..., k }  (10) 
(of course, as for the Klotz construction itself, the set {P,, . . . , Pk} depends on VI, (and 
on the scalar product)). As a consequence, a proper space filling of VIl or V ,  obtained 
by our method will be a tiling of VI,. For a general VI, in V, this tiling will not be 
periodic but quasiperiodic in the sense that every finite part of it will be repeated 
uniformly distributed over VI, .  

An example of a Klotz construction in a 2~ point lattice is seen in figure 1. One 
observes at once that three Klotze form a fundamental domain for the 2~ lattice. A 
cut through the construction parallel to VI, or V ,  yields one-dimensional tilings with 
three non-congruent tiles corresponding to (8)  and (9) ,  respectively. 

Figure 2 shows the Klotz construction in a tetragonal lattice with one defect 
according to the rules presented above. Dependent on the distance of the cut plane 
from the defect location, there will be a local perturbation in the quasiperiodic pattern 
in comparison with the ‘ideal’ tiling. One learns from this example that local defects 
in the high-dimensional structure produce local defects in the projected pattern. 

Let us comment on how the most familiar examples of quasiperiodic tilings fit into 
the framework of the Klotz construction. 

The Penrose pattern in two dimensions and the icosahedral pattern in three 
dimensions can be obtained from hypercubic lattices in five and six dimensions, 
respectively. de Bruijn [3], in his analysis of the Penrose tiling, introduced a two- 
dimensional pentagrid and its dualisation. The grid method was generalised and 

Figure 1. The Klotz construction on a generic 2~ point lattice. The full circles represent 
lattice points, the broken lines are I-boundaries of Voronoi cells, the chain lines are dual 
1-boundaries and the full lines are Klotze. 
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Figure 2. The Klotz construction in a tetragonal point lattice with one point removed. The 
full circles represent lattice points, the open circle is the removed point, the broken lines 
are 1-boundaries of Voronoi cells, the chain lines are dual 1-boundaries and the full lines 
are Klotze. 

applied to the icosahedral quasilattice in three dimensions by Kramer and Neri [4]. 
The equivalence of the grid formalism with the strip method was shown by Gahler 
and Rhyner [ 5 ] .  In  [6] it was shown that the grid method in m-dimensional spaces 
arises from the duality concept for hypercubic lattices in n dimensions ( n  > m ) .  For 
these lattices, the Wigner-Seitz cell (i.e. the Voronoi domain) and the primitive cell 
generate by translations the complexes Cy.,. and 'VF in the present notation, with the 
consequence that the two complexes are equivalent up to a translation. The Klotz 
construction for (hyper-)cubic lattices in dimensions n = 2 , 3 , 6  was introduced in [7]. 
The 'oblique' tilings introduced by Oguey et a1 [8] are essentially Klotz constructions 
for general hypercubic lattices. In  [9] the concept of dual cell structures and related 
Klotz constructions for non-hypercubic lattices was proposed and illustrated for Bravais 
lattices in two dimensions and for centred cubic lattices in three dimensions. Here 
the dual complexes become inequivalent to one another. 

The present approach based on Voronoi domains provides a new and very general 
framework for perfect and imperfect cell structures in quasicrystals. It has recently 
been applied to the four-dimensional root lattice A, and yields a new triangular tiling 
with pentagonal symmetry [ 101. For the purpose of a theory of defects in quasicrystals, 
the next step would be an investigation of the effect of the whole variety of known 
dislocation scenarios in high-dimensional lattices on the ideal projected quasiperiodic 
patterns. 

We would like to thank M Baake and Z Papadopolos for discussions and helpful 
comments. This work was supported by the Deutsche Forschungsgemeinschaft. 
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